Network Science For Pre-service Elementary Educators

MAA MathFest Philadelphia August 5, 2022

Amanda Beecher, PhD Associate Professor of Mathematics Convener of Data Science Program Director of MS in Applied Mathematics

Hannah SalemiJessica GryczkoElementary Education Majors

Outline

- Context
- Motivation
- Classroom Activities
 - \circ 2 class days virtual
 - \circ 4 class days in person
- Example student work

MATH 210: Mathematics for Elementary Educators

- Course created for pre-service teachers only
- 20 students enrolled in Spring 2022 section
- Examine mathematical ideas underpinning the K-6 curriculum
- Additional modules added from standard syllabus
 - Mathematical Modeling
 - Network Science

Motivation Chris Arney gave a talk at NetSciEd: Q: At what age can/do children understand networks?

Motivation

Chris Arney gave a talk at NetSciEd:

Q: At what age can/do children understand networks?

Follow on Q:

Where are networks in the curriculum?

AND

When do their teachers learn about networks?

INTRODUCTION

• Draw your community or family tree.

Questions to consider:

- . What do these images have in common?
- . What is different about these images?
- Is there anything unique about a particular image?

Other observations?

STUDENT EXAMPLES - VIRTUAL

STUDENT EXAMPLES - VIRTUAL

Nana Begum (Grandmother From Mother side)

Yusuf Begum (Grandfather From Mother side)

Sarah (Mothers Sister)

Lisa (Mothers Sister)

Rashid(Mothers Brother)

Monoara (Mother)

Mary Taher(Grandmother From Father side)

Adam Taher (Grandfather From Father side)

Jackie (Fathers Sister)

David (Fathers Brother)

Abu (Father)

Monoara (Motaleb's Mother) Abu (Motaleb's Father)

Johnny (Motaleb's Older Brother)

Motaleb

IMAGE ANALYSIS OF COMMUNITY/FAMILY TREE

- Direct relationships
 - Parent child
 - Siblings
 - Marriages
- Indirect relationships
 - Grandparents
 - Cousins
 - Friends

IMAGE ANALYSIS OF COMMUNITY/FAMILY TREE

- Direct relationships
 - Parent child
 - Siblings
 - Marriages
- Indirect relationships

 Grandparents
 Cousins
 Friends

Networks describe how things connect and interact.

Motivation

Chris Arney gave a talk at NetSciEd:

Q: At what age can/do children understand networks?

Follow on Q:

Where are networks in the curriculum?

AND

When do their teachers learn about networks?

Factor Tree

https://www.youtube.com/watch?v=WnR7SRFEICI

Math combinations

https://www.kaptest.com/

Probability Problems

https://www.onlinemathlearning.com/probability-tree-diagrams.html

Biology

https://countrytraveleronline.com/2019/10/07/the-anatomy-of-a-timber-tree/

Bark and Leaf Tracing

https://www.firstpalette.com/craft/leaf-rubbings.html

https://www.amazon.com/Evolution-Color-Science-Information-Poster/dp/B008K9ZCL

Root, prefix, and suffix of words

https://www.pinterest.com/pin/527906387573862954/

Plot of a book

https://fcmalby.com/2014/05/14/narrative-arc-shaping-your-story/

Web Diagram of a story

https://coe.jmu.edu/learningtoolbox/spore.html

Character Tree

Romeo & Juliet Character Tree

https://www.sutori.com/en/item/the-character-tree-shows-the-lines-drawn-between-the and-other-characters

Characters in story

Fortuin, Vincent & Weber, Romann & Schriber, Sasha & Wotruba, Diana & Gross, Mar InspireMe: Learning Sequence Models for Stories.

Timeline or flow of events

https://www.amazon.com/Timeline-World-History-Poster-24x36/dp/B005NLLKWS/ref=asc_df_B005NLLKWS/?tag=hyprod-20&linkCode=df0&hvadid=266182251588&hvpos=&hvnetw=g&hvrand=14643104 168636947056&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlo cphy=9051781&hvtargid=pla-574372008132&psc=1

Cultural Heritage

RAMAPO COLLEGE

https://familyhistorydaily.com/genealogy-help-and-how-to/family-tree-charts/

Cultural Heritage

Networks are everywhere.

https://familyhistorydaily.com/genealogy-help-and-how-to/family-tree-charts/

Motivation

Chris Arney gave a talk at NetSciEd:

Q: At what age can/do children understand networks?

Follow on Q:

Where are networks in the curriculum your life?

AND

When do their teachers learn about networks?

ORGANIZATIONAL CHART

https://www.ramapo.edu/fa/2022/02/15/faec-meeting-minutesjan-26-2022/

SOCIAL NETWORKS

https://www.freepik.com/free-photos-vectors/social-network

INFECTIOUS DISEASES

https://oneill.law.georgetown.edu/reflections-on-the-historyof-contact-tracing/

TELECOMMUNICATIONS

https://community.wmo.int/activity-areas/globaltelecommunication-system-gts

AIRLINE INDUSTRY

https://www.etsy.com/hk-en/listing/268070105/flight-patterns-worldmap-poster-24x36

AIRLINE INDUSTRY

https://www.etsy.com/hk-en/listing/268070105/flight-patterns-worldmap-poster-24x36

Motivation

Chris Arney gave a talk at NetSciEd:

Q: At what age can/do children understand networks?

Follow on Q:

Where are networks in the curriculum?

AND

When do their teachers learn about networks?

QUESTIONS

- Your community?
- Your example of network?

QUESTIONS

- Your community?
- Your example of network?

Visualizations can help provide an understanding of networks.

LANGUAGE OF NETWORKS

- Parts of a Network Vertices/Nodes, Edges/Links, multiple edges
- Types of Networks (un)Directed, weighted
- When are two networks the same?

CREATE A NETWORK

- Elements: 10 numbers in the envelop in front of you.
- Relationship: ???You decide???
 - \circ $\,$ Write your relationship on the index card in the envelope
 - \circ $\,$ Connect those that share the relationship (or directed) and do not connect those that do not
- Lay them out on the paper in front of you. You may organize (or reorganize) them as you wish.

Networks can help reveal patterns.

HOW DO WE STUDY NETWORKS?

- Degree of a node in-degree and out-degree
- Degree sequences
- Walk, Trail, and Path
 - Path Length
 - Diameter

EXAMPLE

Write the degree of each node
Write all shortest paths between every two nodes
Determine the path length between every pair of nodes.

CENTRALITY MEASURES

- Degree Centrality measures the number of connections a node has
- **Betweenness Centrality** measures how well a node connects other nodes (or is between other nodes)
- Closeness Centrality
 measures how close (or far) a node is from other nodes

CENTRALITY MEASURES

- Degree Centrality measures the number of connections a node has
- **Betweenness Centrality** measures how well a node connects other nodes (or is between other nodes)
- Closeness Centrality
 measures how close (or far) a node is from other nodes

Today's Computer technology allows you to study real-world networks.

STUDENT PROJECTS

- Students selected their own projects to present to the class.
- Two groups chose network problems.

STUDENT PROJECTS

RAMAPO COLLEGE OF NEW JERSEY

NETWORK LITERACY: ESSENTIAL CONCEPTS AND CORE IDEA

- 1. Networks are everywhere.
- 2. Networks describe how things connect and interact.
- 3. Networks can help reveal patterns.
- 4. Visualizations can help provide an understanding of networks.
- 5. Today's Computer technology allows you to study real-world networks.
- 6. Networks help you to compare a wide variety of systems.
- 7. The structure of a network can influence its state and vice versa.

https://sites.google.com/a/binghamton.edu/netscied/teachinglearning/network-concepts

THANK YOU!

Amanda Beecher abeecher@ramapo.edu

